Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Nat Commun ; 15(1): 2974, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582895

RESUMO

Linear ubiquitination catalyzed by HOIL-1-interacting protein (HOIP), the key component of the linear ubiquitination assembly complex, plays fundamental roles in tissue homeostasis by executing domain-specific regulatory functions. However, a proteome-wide analysis of the domain-specific interactome of HOIP across tissues is lacking. Here, we present a comprehensive mass spectrometry-based interactome profiling of four HOIP domains in nine mouse tissues. The interaction dataset provides a high-quality HOIP interactome resource with an average of approximately 90 interactors for each bait per tissue. HOIP tissue interactome presents a systematic understanding of linear ubiquitination functions in each tissue and also shows associations of tissue functions to genetic diseases. HOIP domain interactome characterizes a set of previously undefined linear ubiquitinated substrates and elucidates the cross-talk among HOIP domains in physiological and pathological processes. Moreover, we show that linear ubiquitination of Integrin-linked protein kinase (ILK) decreases focal adhesion formation and promotes the detachment of Shigella flexneri-infected cells. Meanwhile, Hoip deficiency decreases the linear ubiquitination of Smad ubiquitination regulatory factor 1 (SMURF1) and enhances its E3 activity, finally causing a reduced bone mass phenotype in mice. Overall, our work expands the knowledge of HOIP-interacting proteins and provides a platform for further discovery of linear ubiquitination functions in tissue homeostasis.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Animais , Camundongos , Homeostase , NF-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Nat Commun ; 15(1): 2970, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582759

RESUMO

Photoelectrochemical seawater splitting is a promising route for direct utilization of solar energy and abundant seawater resources for H2 production. However, the complex salinity composition in seawater results in intractable challenges for photoelectrodes. This paper describes the fabrication of a bilayer stack consisting of stainless steel and TiO2 as a cocatalyst and protective layer for Si photoanode. The chromium-incorporated NiFe (oxy)hydroxide converted from stainless steel film serves as a protective cocatalyst for efficient oxygen evolution and retarding the adsorption of corrosive ions from seawater, while the TiO2 is capable of avoiding the plasma damage of the surface layer of Si photoanode during the sputtering of stainless steel catalysts. By implementing this approach, the TiO2 layer effectively shields the vulnerable semiconductor photoelectrode from the harsh plasma sputtering conditions in stainless steel coating, preventing surface damages. Finally, the Si photoanode with the bilayer stack inhibits the adsorption of chloride and realizes 167 h stability in chloride-containing alkaline electrolytes. Furthermore, this photoanode also demonstrates stable performance under alkaline natural seawater for over 50 h with an applied bias photon-to-current efficiency of 2.62%.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38652888

RESUMO

Developing an insoluble cross-linkable hole transport layer (HTL) plays an important role for solution-processed quantum dots light-emitting diodes (QLEDs) to fabricate a multilayer device with separated quantum dots layers and HTLs. In this work, a facile photothermal synergic cross-linking strategy is simultaneous annealing and UV irradiation to form the high-quality cross-linked film as the HTL without any photoinitiator, which efficiently reduces the cross-linking temperature to the low temperature of 130 °C and enhances the hole mobility of the 3-vinyl-9-{4-[4-(3-vinylcarbazol-9-yl)phenyl]phenyl}carbazole (CBP-V) thin films. The obtained high-quality cross-linked CBP-V films exhibited smooth morphology, excellent solvent resistance, and high mobility. Moreover, the high-performance red, green, and blue (RGB) QLEDs are successfully fabricated by using the photothermal synergic cross-linked HTLs, which achieved the maximum external quantum efficiency of 25.69, 24.42, and 16.51%, respectively. This work presents a strategy of using the photothermal synergic cross-linked HTLs for fabrication of high-performance QLEDs and advancing their related device applications.

4.
Haemophilia ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616526

RESUMO

BACKGROUND: There is a lack of research on the relationship between pain catastrophizing, kinesiophobia, and physical activity (PA) in people with haemophilia (PWH), and the underlying mechanisms connecting these variables remain unclear. AIM: The study's aim was to clarify the roles of kinesiophobia and self-efficacy in the relationship between pain catastrophizing and PA in PWH. METHODS: This cross-sectional study included adult PWH at the Haemophilia Centre of a Tertiary hospital in Beijing, China. The following questionnaires were used to collect data: the general information, the International Physical Activity Short Questionnaire, the Pain Catastrophizing Scale, the Tampa Scale of Kinesiophobia Scale, and the Exercise Self-Efficacy Scale. RESULTS: The study included a total of 187 PWH, including 154 having haemophilia A and 33 having haemophilia B. The median interquartile range of PA was 594 (198, 1554) MET-min/wk. There were significant differences in PA of patients based on age stage, treatment modality, highest pain score within the last seven days, and presence of haemophilic arthropathy (p < .05). It was showed that pain catastrophizing could directly predict PA (p < .001), accounting for 38.13% of the total effect. Pain catastrophizing also had indirect effects on PA through the mediating factors of kinesiophobia or self-efficacy, and through the chain-mediating effect of kinesiophobia and self-efficacy, accounting for 38.40%, 17.07%, and 6.40%, respectively. CONCLUSION: The study discovered that PWH have limited PA due to pain catastrophizing. This not only directly affects their activity but also indirectly influences it through kinesiophobia and self-efficacy.

5.
iScience ; 27(5): 109599, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646178

RESUMO

Alstonia scholaris of the Apocynaceae family is a medicinal plant with a rich source of bioactive monoterpenoid indole alkaloids (MIAs), which possess anti-cancer activity like vinca alkaloids. To gain genomic insights into MIA biosynthesis, we assembled a high-quality chromosome-level genome for A. scholaris using nanopore and Hi-C data. The 444.95 Mb genome contained 35,488 protein-coding genes. A total of 20 chromosomes were assembled with a scaffold N50 of 21.75 Mb. The genome contained a cluster of strictosidine synthases and tryptophan decarboxylases with synteny to other species and a saccharide-terpene cluster involved in the monoterpenoid biosynthesis pathway of the MIA upstream pathway. The multi-omics data of A. scholaris provide a valuable resource for understanding the evolutionary origins of MIAs and for discovering biosynthetic pathways and synthetic biology efforts for producing pharmaceutically useful alkaloids.

6.
Nano Lett ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626333

RESUMO

The performance of blue quantum dot light-emitting diodes (QLEDs) is limited by unbalanced charge injection, resulting from insufficient holes caused by low mobility or significant energy barriers. Here, we introduce an angular-shaped heteroarene based on cyclopentane[b]thiopyran (C8-SS) to modify the hole transport layer poly-N-vinylcarbazole (PVK), in blue QLEDs. C8-SS exhibits high hole mobility and conductivity due to the π···π and S···π interactions. Introducing C8-SS to PVK significantly enhanced hole mobility, increasing it by 2 orders of magnitude from 2.44 × 10-6 to 1.73 × 10-4 cm2 V-1 s-1. Benefiting from high mobility and conductivity, PVK:C8-SS-based QLEDs exhibit a low turn-on voltage (Von) of 3.2 V. More importantly, the optimized QLEDs achieve a high peak power efficiency (PE) of 7.13 lm/W, which is 2.65 times that of the control QLEDs. The as-proposed interface engineering provides a novel and effective strategy for achieving high-performance blue QLEDs in low-energy consumption lighting applications.

7.
Biol Direct ; 19(1): 24, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504385

RESUMO

BACKGROUND: Pancreatic cancer stem cells are crucial for tumorigenesis and cancer metastasis. Presently, long non-coding RNAs were found to be associated with Pancreatic Ductal Adenocarcinoma stemness characteristics but the underlying mechanism is largely known. Here, we aim to explore the function of LINC00909 in regulating pancreatic cancer stemness and cancer metastasis. METHODS: The expression level and clinical characteristics of LINC00909 were verified in 80-paired normal pancreas and Pancreatic Ductal Adenocarcinoma tissues from Guangdong Provincial People's Hospital cohort by in situ hybridization. RNA sequencing of PANC-1 cells with empty vector or vector encoding LINC00909 was experimented for subsequent bioinformatics analysis. The effect of LINC00909 in cancer stemness and metastasis was examined by in vitro and in vivo experiments. The interaction between LINC00909 with SMAD4 and the pluripotency factors were studied. RESULTS: LINC00909 was generally upregulated in pancreatic cancer tissues and was associated with inferior clinicopathologic features and outcome. Over-expression of LINC00909 enhanced the expression of pluripotency factors and cancer stem cells phenotype, while knock-down of LINC00909 decreased the expression of pluripotency factors and cancer stem cells phenotype. Moreover, LINC00909 inversely regulated SMAD4 expression, knock-down of SMAD4 rescued the effect of LINC00909-deletion inhibition on pluripotency factors and cancer stem cells phenotype. These indicated the effect of LINC00909 on pluripotency factors and CSC phenotype was dependent on SMAD4 and MAPK/JNK signaling pathway, another downstream pathway of SMAD4 was also activated by LINC00909. Specifically, LINC00909 was localized in the cytoplasm in pancreatic cancer cells and decreased the stability the SMAD4 mRNA. Finally, we found over-expression of LINC00909 not only accelerated tumor growth in subcutaneous mice models, but also facilitated tumorigenicity and spleen metastasis in orthotopic mice models. CONCLUSION: We demonstrate LINC00909 inhibits SMAD4 expression at the post-transcriptional level, which up-regulates the expression of pluripotency factors and activates the MAPK/JNK signaling pathway, leading to enrichment of cancer stem cells and cancer metastasis in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Fenótipo , Proteína Smad4/genética , Proteína Smad4/metabolismo , RNA não Traduzido/genética
8.
J Nephrol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526665

RESUMO

BACKGROUND: Various immune cells, including T cells, B cells, macrophages, and neutrophils contribute to the development of crescentic glomerulonephritis. Previous animal studies have suggested that lymphangiogenesis is involved in the migration of inflammatory cells and the activation of adaptive immunity. However, the extent of the association between lymphatic vessels and crescentic glomerulonephritis severity and prognosis remains unknown. METHODS AND RESULTS: In this study, we assessed lymphatic vessel density in 71 patients with crescentic glomerulonephritis who underwent renal biopsies between June 2017 and June 2022. By immunohistochemistry and immunofluorescence, we identified increased lymphatic vessel density in the kidneys of patients with crescentic glomerulonephritis compared to controls. Lymphatic vessels were categorized as total, periglomerular, and interstitial. Spearman's rank correlation analysis showed a positive correlation between total and periglomerular lymphatic vessel density and glomerular crescent proportion. High lymphatic vessel density (total and periglomerular) correlated with declining kidney function, increased proteinuria, and severe glomerular and interstitial pathology. Interstitial lymphatic vessel density had minimal relationship with renal lesions. After a median duration of 13 months of follow-up, higher total and periglomerular lymphatic vessel density was associated with poorer prognosis. Transcriptomic analysis revealed increased immune cell activation and migration in crescentic glomerulonephritis patients compared to healthy controls. Periglomerular lymphatic vessels might play a significant role in immune cell infiltration and renal injury. CONCLUSION: Elevated lymphatic vessel density in patients with crescentic glomerulonephritis is associated with poor prognosis and may serve as a predictive factor for adverse outcomes in these patients.

9.
J Colloid Interface Sci ; 665: 465-476, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537592

RESUMO

With the ever-increasing challenge of heavy metal pollution, the imperative for developing highly efficient adsorbents has become apparent to remove metal ions from wastewater completely. In this study, we introduce a novel magnetic core-shell adsorbent, Fe3O4@UiO-66-PDA. It features a polydopamine (PDA) modified zirconium-based metal-organic framework (UiO-66) synthesized through a simple solvothermal method. The adsorbent boasts a unique core-shell architecture with a high specific surface area, abundant micropores, and remarkable thermal stability. The adsorption capabilities of six metal ions (Fe3+, Mn2+, Pb2+, Cu2+, Hg2+, and Cd2+) were systematically investigated, guided by the theory of hard and soft acids and bases. Among these, three representative metal ions (Fe3+, Pb2+, and Hg2+) were scrutinized in detail. The activated Fe3O4@UiO-66-PDA exhibited exceptional adsorption capacities for these metal ions, achieving impressive values of 97.99 mg/g, 121.42 mg/g, and 130.72 mg/g, respectively, at pH 5.0. Moreover, the adsorbent demonstrated efficient recovery from aqueous solution using an external magnet, maintaining robust adsorption efficiency (>80%) and stability even after six cycles. To delve deeper into the optimized adsorption of Hg2+, density functional theory (DFT) analysis was employed, revealing an adsorption energy of -2.61 eV for Hg2+. This notable adsorption capacity was primarily attributed to electron interactions and coordination effects. This study offers valuable insights into metal ion adsorption facilitated, by magnetic metal-organic framework (MOF) materials.

10.
Int J Nanomedicine ; 19: 1667-1681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406604

RESUMO

Introduction: Hydroxylapatite (HAp) is a biodegradable bone graft material with high biocompatibility. However, the clinical application of HAp has been limited due to the poor absorption rate in vivo. Methods: In this study, carbonated hydroxylapatite (CHAp) with a chemical composition similar to natural bone was synthesized. HAp and CHAp scaffolds were fabricated by 3D printing. Each material was designed by two types of scaffold model with a maximum width of 8 mm and a thickness of 2 mm, ie, structure I (round shape) and structure II (grid shape). Then, the HAp scaffolds were loaded with lutein. These scaffolds were implanted into the 8 mm bone defect on the top of the rabbit skull within 3 hours in the morning. The curative effects of the scaffolds were assessed two months after implantation. Results: The 3D printed scaffolds did not cause severe inflammation or rejection after implantation. It showed that the porous structures allow bone cells to enter into the scaffolds. Furthermore, CHAp scaffolds were more biocompatible than HAp scaffolds, and showed a higher level of degradation and new bone formation after implantation. Structure II scaffolds with a smaller mineral content degraded faster than structure I, while structure I had better osteoconductive properties than structure II. Besides, the addition of lutein significantly enhanced the rate of new bone formation. Discussion: The uniqueness of this study lies in the synthesis of 3D printed CHAp scaffolds and the implantation of CHAp in rabbit bone defects. The incorporation of suitable carbonate and lutein into HAp can enhance the osteoinductivity of the graft, and CHAp has a faster degradation rate in vivo, all of which provide a new reference for the research and application of apatite-based composites.


Assuntos
Materiais Biocompatíveis , Durapatita , Animais , Coelhos , Durapatita/química , Materiais Biocompatíveis/química , Tecidos Suporte/química , Luteína , Regeneração Óssea , Crânio/cirurgia , Impressão Tridimensional , Osteogênese , Engenharia Tecidual/métodos , Porosidade
11.
BMC Med Imaging ; 24(1): 45, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360550

RESUMO

BACKGROUND: Tumor mutational burden (TMB) is one of the most significant predictive biomarkers of immunotherapy efficacy in non-small cell lung cancer (NSCLC). Radiomics allows high-throughput extraction and analysis of advanced and quantitative medical imaging features. This study develops and validates a radiomic model for predicting TMB level and the response to immunotherapy based on CT features in NSCLC. METHOD: Pre-operative chest CT images of 127 patients with NSCLC were retrospectively studied. The 3D-Slicer software was used to outline the region of interest and extract features from the CT images. Radiomics prediction model was constructed by LASSO and multiple logistic regression in a training dataset. The model was validated by receiver operating characteristic (ROC) curves and calibration curves using external datasets. Decision curve analysis was used to assess the value of the model for clinical application. RESULTS: A total of 1037 radiomic features were extracted from the CT images of NSCLC patients from TCGA. LASSO regression selected three radiomics features (Flatness, Autocorrelation and Minimum), which were associated with TMB level in NSCLC. A TMB prediction model consisting of 3 radiomic features was constructed by multiple logistic regression. The area under the curve (AUC) value in the TCGA training dataset was 0.816 (95% CI: 0.7109-0.9203) for predicting TMB level in NSCLC. The AUC value in external validation dataset I was 0.775 (95% CI: 0.5528-0.9972) for predicting TMB level in NSCLC, and the AUC value in external validation dataset II was 0.762 (95% CI: 0.5669-0.9569) for predicting the efficacy of immunotherapy in NSCLC. CONCLUSION: The model based on CT radiomic features helps to achieve cost effective improvement in TMB classification and precise immunotherapy treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , 60570 , Tomografia Computadorizada por Raios X/métodos , Biomarcadores Tumorais , Imunoterapia
12.
Int J Biol Macromol ; 262(Pt 1): 129588, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296668

RESUMO

In this study, the base film (CSL) was prepared by blending tunicate cellulose nanocrystals (TCNCs) extracted from tunicate shells, with sodium alginate (SA) and alkali lignin (AL). Then, the mulching film (CSL-WK) was prepared using water-borne polyurethane (WPU) as binder to install low-energy Kaolin on the surface of CSL film. The influences of composition with different concentrations on mechanical properties were studied. The tensile strength and elongation at break of CSL-WK film could reach 86.58 MPa and 50.49 %, respectively. The mulching films were characterized by degradability test, SEM, FTIR, and TGA. TCNCs had good compatibility with SA and AL, and a rough structure was formed on the surface of the film to improve the hydrophobicity. The barrier properties, including ultraviolet resistance, water contact angle, water vapor permeability, water retention, and flame retardancy, were tested. The results showed that CSL-WK films could block 97 % of ultraviolet light, reduce about 25 % of soil water loss, and self-extinguish within 7 s of open flame ignition. Note that the secondary spraying method significantly improved the barrier property of films. This study lays a foundation for the preparation of ecologically friendly, biodegradable, and high barrier mulching film, and expands the application of marine resources.


Assuntos
Nanopartículas , Urocordados , Animais , Lignina , Celulose/química , Alginatos/química , Álcalis , Nanopartículas/química
13.
Sci Rep ; 14(1): 905, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195915

RESUMO

Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg2Ni-based alloys. This study used a small amount of Y to substitute Mg partially in Mg2Ni0.9Co0.1 and characterized and discussed the effects of Y on the solidification and de-/hydrogenation behaviors. The Mg2-xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) hydrogen storage alloys were prepared using a metallurgy method. The phase composition of the alloys was studied using X-ray diffraction (XRD). Additionally, their microstructure and chemical composition were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The hydrogen absorption and desorption properties of the alloys were studied using pressure-composition isotherms and differential scanning calorimetric (DSC) measurements. The structure of the as-cast Mg2Ni0.9Co0.1 alloy was composed of the peritectic Mg2Ni, eutectic Mg-Mg2Ni, and a small amount of pre-precipitated Mg-Ni-Co ternary phases, and was converted into the Mg2NiH4, Mg2Ni0.9Co0.1H4, and MgH2 phases after hydrogen absorption. Furthermore, the XRD patterns of the alloys showed the MgYNi4 phase and a trace amount of the Y2O3 phase along with the Mg and Mg2Ni phases after the addition of Y. After hydrogen absorption, the phase of the alloys was composed of the Mg2NiH4, MgH2, MgYNi4, YH3, Y2O3, and Mg2NiH0.3 phases. With the increase of Y addition, the area ratios of the peritectic Mg2Ni matrix phase in the Mg2-xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) alloys gradually decreased until they disappeared. However, the eutectic structure gradually increased, and the microstructures of the alloys were obviously refined. The addition of Y improves the activation performance of the alloys. The alloy only needed one cycle of de-/hydrogenation to complete the activation for x = 0.4. The DSC curves showed that the initial dehydrogenation temperatures of Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 were 200 and 156 °C, respectively. The desorption activation energies of the hydrides of the Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 alloys calculated using the Kissinger method were 94.7 and 56.5 kJ/mol, respectively. Moreover, the addition of Y reduced the initial desorption temperature of the alloys and improved their kinetic properties.

14.
Proc Natl Acad Sci U S A ; 121(4): e2316724121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232284

RESUMO

Photoelectrochemical (PEC) carbon dioxide (CO2) reduction (CO2R) holds the potential to reduce the costs of solar fuel production by integrating CO2 utilization and light harvesting within one integrated device. However, the CO2R selectivity on the photocathode is limited by the lack of catalytic active sites and competition with the hydrogen evolution reaction. On the other hand, serious parasitic light absorption occurs on the front-side-illuminated photocathode due to the poor light transmittance of CO2R cocatalyst films, resulting in extremely low photocurrent density at the CO2R equilibrium potential. This paper describes the design and fabrication of a photocathode consisting of crystal phase-modulated Ag nanocrystal cocatalysts integrated on illumination-reaction decoupled heterojunction silicon (Si) substrate for the selective and efficient conversion of CO2. Ag nanocrystals containing unconventional hexagonal close-packed phases accelerate the charge transfer process in CO2R reaction, exhibiting excellent catalytic performance. Heterojunction Si substrate decouples light absorption from the CO2R catalyst layer, preventing the parasitic light absorption. The obtained photocathode exhibits a carbon monoxide (CO) Faradaic efficiency (FE) higher than 90% in a wide potential range, with the maximum FE reaching up to 97.4% at -0.2 V vs. reversible hydrogen electrode. At the CO2/CO equilibrium potential, a CO partial photocurrent density of -2.7 mA cm-2 with a CO FE of 96.5% is achieved in 0.1 M KHCO3 electrolyte on this photocathode, surpassing the expensive benchmark Au-based PEC CO2R system.

15.
Plant Physiol ; 194(2): 1041-1058, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772952

RESUMO

In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estômatos de Plantas/metabolismo , Arabidopsis/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Mitocôndrias/metabolismo
16.
Biomol Ther (Seoul) ; 32(1): 56-64, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37465849

RESUMO

Biased signaling or functional selectivity refers to the ability of an agonist or receptor to selectively activate a subset of transducers such as G protein and arrestin in the case of G protein-coupled receptors (GPCRs). Although signaling through arrestin has been reported from various GPCRs, only a few studies have examined side-by-side how it differs from signaling via G protein. In this study, two signaling pathways were compared using dopamine D2 receptor (D2R) mutants engineered via the evolutionary tracer method to selectively transduce signals through G protein or arrestin (D2G and D2Arr, respectively). D2G mediated the inhibition of cAMP production and ERK activation in the cytoplasm. D2Arr, in contrast, mediated receptor endocytosis accompanied by arrestin ubiquitination and ERK activation in the nucleus as well as in the cytoplasm. D2Arr-mediated ERK activation occurred in a manner dependent on arrestin3 but not arrestin2, accompanied by the nuclear translocation of arrestin3 via importin1. D2R-mediated ERK activation, which occurred in both the cytosol and nucleus, was limited to the cytosol when cellular arrestin3 was depleted. This finding supports the results obtained with D2Arr and D2G. Taken together, these observations indicate that biased signal transduction pathways activate distinct downstream mechanisms and that the subcellular regions in which they occur could be different when the same effectors are involved. These findings broaden our understanding on the relation between biased receptors and the corresponding downstream signaling, which is critical for elucidating the functional roles of biased pathways.

17.
Nano Lett ; 24(5): 1594-1601, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38134416

RESUMO

Blue quantum dot (QD) light-emitting diodes (QLEDs) exhibit unsatisfactory operational stability and electroluminescence (EL) properties due to severe nonradiative recombination induced by large numbers of dangling bond defects and charge imbalance in QD. Herein, dipolar aromatic amine-functionalized molecules with different molecular polarities are employed to regulate charge transport and passivate interfacial defects between QD and the electron transfer layer (ETL). The results show that the stronger the molecular polarity, especially with the -CF3 groups possessing a strong electron-withdrawing capacity, the more effective the defect passivation of S and Zn dangling bonds at the QD surface. Moreover, the dipole interlayer can effectively reduce electron injection into QD at high current density, enhancing charge balance and mitigating Joule heat. Finally, blue QLEDs exhibit a peak external quantum efficiency (EQE) of 21.02% with an operational lifetime (T50 at 100 cd m-2) exceeding 4000 h.

18.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067476

RESUMO

Taxanes are the best-known compounds in Taxus cuspidata owing to their strong anticancer effects. However, the traditional taxanes extraction method is the solid-liquid extraction method, which is limited by a large energy consumption and low yield. Therefore, it is urgent to find an efficient method for taxanes extraction. The ultrasonic microwave synergistic extraction (UME) method integrates the cavitation effect of ultrasound and the intensifying heat transfer (ionic conduction and dipole rotation of molecules) effect of microwave to accelerate the release of intracellular compounds and is used in active ingredient extractions. This study aimed to evaluate the performance of UME in extracting taxanes from T. cuspidata needles (dichloromethane-ethanol as extractant). A single-factor experiment, Plackett-Burman design, and the response surface method showed that the optimal UME parameters for taxanes extraction were an ultrasonic power of 300 W, a microwave power of 215 W, and 130 sieve meshes. Under these conditions, the taxanes yield was 570.32 µg/g, which increased by 13.41% and 41.63% compared with the ultrasound (US) and microwave (MW) treatments, respectively. The reasons for the differences in the taxanes yield were revealed by comparing the physicochemical properties of T. cuspidata residues after the UME, US, and MW treatments. The cell structures were significantly damaged after the UME treatment, and numerous tiny holes were observed on the surface. The absorption peaks of cellulose, hemicellulose, and lignin increased significantly in intensity, and the lowest peak temperature (307.40 °C), with a melting enthalpy of -5.19 J/g, was found after the UME treatment compared with the US and MW treatments. These results demonstrate that UME is an effective method (570.32 µg/g) to extract taxanes from T. cuspidata needles by destroying cellular structures.


Assuntos
Taxoides , Taxus , Taxoides/química , Taxus/química , Ultrassom , Micro-Ondas , Extratos Vegetais/química
19.
Commun Biol ; 6(1): 1198, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001348

RESUMO

Angelica sinensis roots (Angelica roots) are rich in many bioactive compounds, including phthalides, coumarins, lignans, and terpenoids. However, the molecular bases for their biosynthesis are still poorly understood. Here, an improved chromosome-scale genome for A. sinensis var. Qinggui1 is reported, with a size of 2.16 Gb, contig N50 of 4.96 Mb and scaffold N50 of 198.27 Mb, covering 99.8% of the estimated genome. Additionally, by integrating genome sequencing, metabolomic profiling, and transcriptome analysis of normally growing and early-flowering Angelica roots that exhibit dramatically different metabolite profiles, the pathways and critical metabolic genes for the biosynthesis of these major bioactive components in Angelica roots have been deciphered. Multiomic analyses have also revealed the evolution and regulation of key metabolic genes for the biosynthesis of pharmaceutically bioactive components; in particular, TPSs for terpenoid volatiles, ACCs for malonyl CoA, PKSs for phthalide, and PTs for coumarin biosynthesis were expanded in the A. sinensis genome. These findings provide new insights into the biosynthesis of pharmaceutically important compounds in Angelica roots for exploration of synthetic biology and genetic improvement of herbal quality.


Assuntos
Angelica sinensis , Angelica sinensis/genética , Multiômica , Perfilação da Expressão Gênica , Metabolismo Secundário , Genômica
20.
Plants (Basel) ; 12(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005714

RESUMO

In this research, the cell growth, physiological, and biochemical reactions, as well as the paclitaxel production, of Taxus cuspidata suspension cells after treatment with polyethylene glycol (PEG), cyclodextrin (CD), or salicylic acid (SA) (alone or in combination) were investigated. To reveal the paclitaxel synthesis mechanism of T. cuspidata suspension cells under elicitor treatment, the transcriptomics of the Control group and P + C + S group (PEG + CD + SA) were compared. The results show that there were no significant differences in cell biomass after 5 days of elicitor treatments. However, the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and the activities of phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) after elicitor combination treatments were decreased compared with the single-elicitor treatment. Meanwhile, the antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (PO)) and the contents of soluble sugar and soluble protein were increased after combination elicitor treatments. Additionally, the paclitaxel yield after treatment with the combination of all three elicitors (P + C + S) was 6.02 times higher than that of the Control group, thus indicating that the combination elicitor treatments had a significant effect on paclitaxel production in T. cuspidata cell suspension culture. Transcriptomics analysis revealed 13,623 differentially expressed genes (DEGs) between the Control and P + C + S treatment groups. Both GO and KEGG analyses showed that the DEGs mainly affected metabolic processes. DEGs associated with antioxidant enzymes, paclitaxel biosynthesis enzymes, and transcription factors were identified. It can be hypothesized that the oxidative stress of suspension cells occurred with elicitor stimulation, thereby leading to a defense response and an up-regulation of the gene expression associated with antioxidant enzymes, paclitaxel synthesis enzymes, and paclitaxel synthesis transcription factors; this ultimately increased the production of paclitaxel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...